Appendices

Appendix D Noise Data

Appendices

This page intentionally left blank.

Noise Background and Modeling Data

NOISE

Noise is most often defined as unwanted sound; whether it is loud, unpleasant, unexpected, or otherwise undesirable. Although sound can be easily measured, the perception of noise and the physical response to sound complicate the analysis of its impact on people. People judge the relative magnitude of sound sensation in subjective terms such as "noisiness" or "loudness."

Noise Descriptors

The following are brief definitions of terminology used in this chapter:

- **Sound.** A disturbance created by a vibrating object, which, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.
- Noise. Sound that is loud, unpleasant, unexpected, or otherwise undesirable.
- Decibel (dB). A unitless measure of sound, expressed on a logarithmic scale and with respect to a defined reference sound pressure. The standard reference pressure is 20 micropascals (20 μPa).
- Vibration Decibel (VdB). A unitless measure of vibration, expressed on a logarithmic scale and with respect to a defined reference vibration velocity. In the U.S., the standard reference velocity is 1 micro-inch per second (1x10⁻⁶ in/sec).
- **A-Weighted Decibel (dBA).** An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear.
- Equivalent Continuous Noise Level (L_{eq}); also called the Energy-Equivalent Noise Level. The value of an equivalent, steady sound level which, in a stated time period (often over an hour) and at a stated location, has the same A-weighted sound energy as the time-varying sound. Thus, the L_{eq} metric is a single numerical value that represents the equivalent amount of variable sound energy received by a receptor over the specified duration.
- Statistical Sound Level (L_n). The sound level that is exceeded "n" percent of time during a given sample period. For example, the L₅₀ level is the statistical indicator of the time-varying noise signal that is exceeded 50 percent of the time (during each sampling period); that is, half of the sampling time, the changing noise levels are above this value and half of the time they are below it. This is called the "median sound level." The L₁₀ level, likewise, is the value that is exceeded 10 percent of the time (i.e., near the maximum) and this is often known as the "intrusive sound level." The L₉₀ is the sound level exceeded 90 percent of the time and is often considered the "effective background level" or "residual noise level."
- Day-Night Sound Level (L_{dn} or DNL). The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the sound levels occurring during the period from 10:00 PM to 7:00 AM.
- Community Noise Equivalent Level (CNEL). The energy average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added from 7:00 PM to 10:00 PM and 10 dB from 10:00 PM to 7:00 AM. NOTE: For general community/environmental noise, CNEL and L_{dn} values rarely differ by more than 1 dB (with the CNEL being only slightly more restrictive that is, higher than the L_{dn} value). As a matter of practice, L_{dn} and CNEL values are interchangeable and are treated as equivalent in this assessment.
- Sensitive Receptor. Noise- and vibration-sensitive receptors include land uses where quiet environments are necessary for enjoyment and public health and safety. Residences, schools, motels and hotels, libraries, religious institutions, hospitals, and nursing homes are examples.

AMBIENT NOISE MONITORING DATA

ST-1 Time History

Date	Time	Level	SEL
31-May-17	18:53:11	57.5	75.2
31-May-17	18:54:11	57.3	75
31-May-17	18:55:11	57.1	74.9
31-May-17	18:56:11	58.4	76.2
31-May-17	18:57:11	57.5	75.3
31-May-17	18:58:11	58	75.8
31-May-17	18:59:11	56.6	74.4
31-May-17	19:00:11	56.6	74.4
31-May-17	19:01:11	56.4	74.2
31-May-17	19:02:11	57.4	75.2
31-May-17	19:03:11	57.8	75.5
31-May-17	19:04:11	57.1	74.9
31-May-17	19:05:11	57.1	74.9
31-May-17	19:06:11	55.8	73.6
31-May-17	19:07:11	55.7	73.5
31-May-17	19:08:11	55.5	73.3

15-min Leq 57.1

					ST-1 Interv	als						
Date	Time	Duration	Leq	SEL	Lmax	Lmin	L(2)	L(8)	L(10)	L(25)	L(50)	L(90)
31-May-17	18:53:11	900	57.1	86.7	64.3	54.5	59.9	58.7	58.6	57.7	56.8	55.4

ST-2 Time History

Date	Time	Level	SEL
31-May-17	19:12:23	57.3	75.1
31-May-17	19:13:23	58.5	76.3
31-May-17	19:14:23	55.9	73.7
31-May-17	19:15:23	61	78.8
31-May-17	19:16:23	60.9	78.7
31-May-17	19:17:23	56.5	74.3
31-May-17	19:18:23	62.5	80.3
31-May-17	19:19:23	58.6	76.3
31-May-17	19:20:23	59.4	77.2
31-May-17	19:21:23	57.8	75.5
31-May-17	19:22:23	71	88.7
31-May-17	19:23:23	61	78.8
31-May-17	19:24:23	57.1	74.9
31-May-17	19:25:23	61.1	78.9
31-May-17	19:26:23	58.9	76.6
31-May-17	19:27:23	54.3	72

15-min Leq 62.2

				S	T-2 Interva	ls						
Date	Time	Duration	Leq	SEL	Lmax	Lmin	L(2)	L(8)	L(10)	L(25)	L(50)	L(90)
31-May-17	19:12:23	900	62.2	91.7	86.4	47.2	67.8	65.1	64.5	60.6	53.8	49.1

ST-3 Time History

Date	Time	Level	SEL
31-May-17	19:40:28	66.6	84.4
31-May-17	19:41:28	59.8	77.6
31-May-17	19:42:28	66.4	84.2
31-May-17	19:43:28	61.9	79.7
31-May-17	19:44:28	63.7	81.4
31-May-17	19:45:28	61.4	79.2
31-May-17	19:46:28	64.3	82.1
31-May-17	19:47:28	64.6	82.4
31-May-17	19:48:28	62.6	80.4
31-May-17	19:49:28	65.4	83.2
31-May-17	19:50:28	64.3	82.1
31-May-17	19:51:28	64.5	82.3
31-May-17	19:52:28	62.5	80.3
31-May-17	19:53:28	64.7	82.5
31-May-17	19:54:28	66.2	84
31-May-17	19:55:28	52.5	70.3

15-min Leq 64.3

					ST-3 Interv	als						
Date	Time	Duration	Leq	SEL	Lmax	Lmin	L(2)	L(8)	L(10)	L(25)	L(50)	L(90)
31-May-17	19:40:28	900	64.3	93.9	76	50.1	71.4	69.1	68.7	66	60.4	51.9

ST-4 Time History

Date	Time	Level	SEL
31-May-17	20:00:08	62.1	79.9
31-May-17	20:01:08	62.9	80.7
31-May-17	20:02:08	63	80.8
31-May-17	20:03:08	63.5	81.3
31-May-17	20:04:08	61.1	78.9
31-May-17	20:05:08	64.2	82
31-May-17	20:06:08	63.3	81.1
31-May-17	20:07:08	63.5	81.3
31-May-17	20:08:08	62.4	80.2
31-May-17	20:09:08	62.9	80.7
31-May-17	20:10:08	62.3	80.1
31-May-17	20:11:08	61.6	79.4
31-May-17	20:12:08	62.1	79.9
31-May-17	20:13:08	61	78.8
31-May-17	20:14:08	61.2	79
31-May-17	20:15:08	61.7	79.5

15-min Leq 62.6

ST-4 Intervals												
Date	Time	Duration	Leq	SEL	Lmax	Lmin	L(2)	L(8)	L(10)	L(25)	L(50)	L(90)
31-May-17	20:00:08	900	62.6	92.1	73.5	58	66.7	64.8	64.5	62.9	61.7	60.2

ST-5 Time History

Date	Time	Level	SEL
31-May-17	20:20:03	52.2	70
31-May-17	20:21:03	56.2	74
31-May-17	20:22:03	55	72.8
31-May-17	20:23:03	53.4	71.2
31-May-17	20:24:03	53.9	71.7
31-May-17	20:25:03	50.2	67.9
31-May-17	20:26:03	50.2	68
31-May-17	20:27:03	52.1	69.9
31-May-17	20:28:03	50.2	68
31-May-17	20:29:03	52.5	70.3
31-May-17	20:30:03	49.9	67.6
31-May-17	20:31:03	50.5	68.2
31-May-17	20:32:03	55.4	73.2
31-May-17	20:33:03	51.4	69.2
31-May-17	20:34:03	50.9	68.6
31-May-17	20:35:03	52.8	70.6

15-min Leq 52.8

ST-5 Intervals												
Date	Time	Duration	Leq	SEL	Lmax	Lmin	L(2)	L(8)	L(10)	L(25)	L(50)	L(90)
31-May-17	20:20:03	900	52.8	82.3	66.5	48	59.2	55.7	55	52.4	50.8	49.2

CONSTRUCTION AND VIBRATION NOISE CALCULATIONS

W	ilson MS Multi-Purpose Field	: Construction Noise Calculations								
	Receptor	Spatially AVG Distance(ft)	Worst-case Distance (ft)	Land Use Type						
1	Residences to North	150	50	Residential						
2	Residences to East	250	100	Residential						
3	School Buildings to West	-	25	Commercial						
4	School Buildings to South	-	25	Commercial						

TYPE PHASE NAME >>>	>		Asphalt Demolitio	(per 8 hour day)	Site Prep		Grading		Utility Tren	ching	Paving		Landscaping	
Equipment Item (Dropdown Menu)	Leq @ 50 ft	Lmax @ 50 ft	Quantity	Hours of Usage	Quantity	Hours of Usage	Quantity	Hours of Usage	Quantity	Hours of Usage	Quantity	Hours of Usage	Quantity	Hours of Usage
(RCNM) Concrete Saw	82.6	89.6	1	8		8		8		8		8		8
(RCNM) Excavator	76.7	80.7	3	8		8	1	8		8		8		8
(RCNM) Dozer	77.7	81.7	2	8	3	8	1	8		8		8		8
(RCNM) Flat Bed Truck	70.3	74.3	1	4	1	4	1	4	1	4		8		8
(RCNM) Backhoe	73.6	77.6		8	4	8	3	8	2	8	1	8		8
(RCNM) Grader	81	85		8		8	1	8		8		8		8
(RCNM) Concrete Mixer Truck	74.8	78.8		8		8		8		8	2	6		8
(RCNM) Paver	74.2	77.2		8		8		8		8	1	8		8
(RCNM) Pavement Scarafier	82.5	89.5		8		8		8		8	2	6		8
(RCNM) Roller	73	80		8		8		8		8	2	6		8
(RCNM) Front End Loader	75.1	79.1		8		8		8		8		8	1	8
(RCNM) Crane	72.6	80.6		8		8		8		8		8	1	6
(RCNM) Man Lift	67.7	74.7		8		8		8		8		8	1	6
	63		Asphalt Demolition	1	Site Prep		Grading		Utility Tren	ching	Paving		Landscaping	
PLACEWORKS Totals at		Total Leq	Lmax	Total Leq	Lmax	Total Leq	Lmax	Total Leq	Lmax	Total Leq	Lmax	Total Leq	Lmax	
		50 feet	86.5	92.0	84.4	88.4	84.9	88.9	77.1	81.1	85.9	92.3	77.0	82.8

ceeds crite	eria				Tota	l Leq/Lmax	(dBA)						
tor	Attenuation	Asphalt De	emolition	Site P	rep	Grad	ing	Utility Tre	enching	Pavi	ng	Landsc	aping
tor	(-) dB	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax
lorth	5	65.5	73.0	69.8	83.4	70.3	83.9	62.5	76.1	64.9	73.4	62.5	77.8
ast		72.5	85.9	70.4	82.4	70.9	82.8	63.1	75.1	71.9	86.3	63.0	76.8
	ceeds crite North East	ceeds criteria htor Attenuation (-) dB North 5 East	ceeds criteria Nor Attenuation (·) dB Asphalt De Leq North 5 65.5 East 72.5	ceeds criteria Attenuation (-) dB Asphalt D=unition Leq Lmax North 5 65.5 73.0 East 72.5 85.9	ceeds criteria Attenuation (-) dB Asphalt Demolition Site F Vorth 5 65.5 73.0 69.8 East 72.5 85.9 70.4	Tota Attenuation (-) dB Asphalt Demolition Site Prep Leq Lmax Leq Lmax North 5 65.5 73.0 69.8 83.4 East 72.5 85.9 70.4 82.4	Total Leq/Lmax Total Leq/Lmax Attenuation (-) dB Asphalt Dewolition Site Pro- Site Registration Grad Leq North 5 65.5 73.0 69.8 83.4 70.3 East 72.5 85.9 70.4 82.4 70.9	Total Leq/Lmax (dBA) Attenuation (-) dB Asphalt Demolition Site Per Leq Lmax Leq Lmax Vorth 5 65.5 73.0 69.8 83.4 70.3 83.9 East 72.5 85.9 70.4 82.4 70.9 82.8	Total Leq/Lmax (dBA) Attenuation (r) dB Asphalt D=voltion Site P=voltana Grading Utility Transmission North 5 65.5 73.0 69.8 83.4 70.3 83.9 62.5 East 72.5 85.9 70.4 82.4 70.9 82.8 63.1	total Leq/Lmax (dBA) total Leq/Lmax (dBA) Attenuation (-) dB Asphalt D=vition Site $reg Gradue Utility re-tring Vorth 5 65.5 73.0 69.8 83.4 70.3 83.9 62.5 76.1 East 72.5 85.9 70.4 82.4 70.9 82.8 63.1 75.1 $	Total Leq/Lmax (dBA) Total Leq/Lmax (dBA) Attenuation (r) dB Asphalt D=vition Site Pro- Leq Grading Utility Trending Paviation North 5 65.5 73.0 69.8 83.4 70.3 83.9 62.5 76.1 64.9 East 72.5 85.9 70.4 82.4 70.9 82.8 63.1 75.1 71.9	Vertex	recess criteria Total Leq/Lmax (JBAP Attenuation (+) dB Asphalt D=/literia Site P=/literia Grading Utility T=/literia Paility Landscriteria Landscriteria North 5 65.5 73.0 69.8 83.4 70.3 83.9 62.5 76.1 64.9 73.4 62.5 East 72.5 85.9 70.4 82.4 70.9 82.8 63.1 75.1 71.9 86.3 63.0

	Phase-Specific Distances (feet)														
		Defa	ault	Asphalt Demolition Site Prep			Grading Utility Trenching			Paving		Landscaping			
		AVG	W-C	AVG	W-C	AVG	W-C	AVG	W-C	AVG	W-C	AVG	W-C	AVG	W-C
1	Residences to North	150	50	315	250	150	50	150	50	150	50	315	250	150	50
2	Residences to East	250	100	250	100	250	100	250	100	250	100	250	100	250	100
Leq measured from spatially averaged distance															
Lmax measured from worst-case distance															
RCNM Appendix A: Practices for Calculating Estimated Shielding (fwha.dot.gov)															
	Attenuation (dB)		Instance												
	3		If a noise	barrier or other	obstruction (lik	e a dirt mound	l) just barely b	reaks the line-of	-sight betweer	the noise sour	ce and the rec	ceptor			
	5		If the nois	e source is in a	enclosure and/	or barrier that	has some gaps	in it							
	5		If a noise	source is enclos	ed or shielded	with heavy viny	I noise curtair	material (e.g., S	SoundSeal BBC	-13-2" or equiva	alent)				
	8		If the nois	e source is com	pletely enclose	d OR complete	y shielded wit	h a solid barrier	located close t	o the source					
	10		If the nois	e source is com	pletely enclose	d AND complet	ely shielded w	ith a solid barrie	r located close	to the source					

Vibration Annoyance	VdB (re. 1 μ-	Distance	to (feet)		Red Cell indicates level e	xceeds FTA criteria	
Equipment Item	in/sec) at 25 ft	78 VdB	84 VdB	Residences to North	Residences to East	School Buildings to West	School Buildings to South
Vibratory Roller	94	85.4	53.9	70.7	64.0	#VALUE!	#VALUE!
Hoe Ram	87	49.9	31.5	63.7	57.0	#VALUE!	#VALUE!
Large Bulldozer	87	49.9	31.5	63.7	57.0	#VALUE!	#VALUE!
Caisson Drilling	87	49.9	31.5	63.7	57.0	#VALUE!	#VALUE!
Loaded Trucks	86	46.2	29.1	62.7	56.0	#VALUE!	#VALUE!
Jackhammer	79	27.0	17.0	55.7	49.0	#VALUE!	#VALUE!
Small Bulldozer	58	5.4	3.4	34.7	28.0	#VALUE!	#VALUE!
Vibration Damage	PPV (in/sec) at	Distance	to (feet)				
Equipment Item	25 ft	0.2 PPV	0.3 PPV	Residences to North	Residences to East	School Buildings to West	School Buildings to South
Vibratory Roller	0.21	25.8	19.7	0.074	0.026	0.210	0.210
Hoe Ram	0.089	14.6	11.1	0.031	0.011	0.089	0.089
Large Bulldozer	0.089	14.6	11.1	0.031	0.011	0.089	0.089
Caisson Drilling	0.089	14.6	11.1	0.031	0.011	0.089	0.089
Loaded Trucks	0.076	13.1	10.0	0.027	0.010	0.076	0.076
Jackhammer	0.035	7.8	6.0	0.012	0.004	0.035	0.035
Small Bulldozer	0.003	1.5	1.2	0.001	0.000	0.003	0.003

TRAFFIC DATA

Wilson Middle School Athletic Field TRAFFIC NOISE CONTOURS RESULT SUMMARY TABLE

			DAILY		Noise Level (dBA)			DISTANCE TO NOISE CONTOUR (FT.)				
			TRAFFIC	Distance to				70	65	60		
#	ROADWAY	SEGMENT	VOLUMES	Reciever	Leq	Ldn	CNEL	dBA CNEL	dBA CNEL	dBA CNEL		
1	Monterey Road between Glendale Ave and Verdugo Rd	Existing	5,260	50	57.6	60.4	61.1	13	27	59		
2	Verdugo Road between Glenoaks Blvd and Monterey Rd	Existing	10,880	50	62.3	65.2	65.8	26	57	122		
3	Glendale Avenue between Glenoaks Blvd and Monterey Rd	Existing	21,210	50	65.6	68.5	69.1	43	94	201		
4	Glenoaks Boulevard between Glendale Ave and Verdugo Rd	Existing	5,120	50	57.5	60.3	61.0	13	27	58		
5	Adams Street between Glenoaks Blvd and Monterey Rd	Existing	580	50	46.2	49.1	49.7	2	5	10		
6	Verdugo Circle north of Glenoaks Blvd	Existing	310	50	41.5	44.3	45.0	1	2	5		
7	Monterey Road between Glendale Ave and Verdugo Rd	Future+P	5,632	50	57.9	60.7	61.4	13	29	62		
8	Verdugo Road between Glenoaks Blvd and Monterey Rd	Future+P	14,540	50	63.6	66.5	67.1	32	69	148		
9	Glendale Avenue between Glenoaks Blvd and Monterey Rd	Future+P	21,960	50	65.7	68.6	69.2	44	96	206		
10	Glenoaks Boulevard between Glendale Ave and Verdugo Rd	Future+P	8,580	50	59.7	62.6	63.2	18	38	82		
11	Adams Street between Glenoaks Blvd and Monterey Rd	Future+P	618	50	46.5	49.3	50.0	2	5	11		
12	Verdugo Circle north of Glenoaks Blvd	Future+P	550	50	43.9	46.8	47.5	2	3	7		

Glendale Athletic Field Traffic Noise Comparison (GLN-02)

		CNEL			ADT	
Roadway	Existing	Future + P	Difference	Existing	Future + P	Difference
Monterey Road between Glendale Ave and Verdugo Rd	61.1	61.4	0.3	5,260	5,632	372
Verdugo Road between Glenoaks Blvd and Monterey Rd	65.8	67.1	1.3	10,880	14,540	3,660
Glendale Avenue between Glenoaks Blvd and Monterey Rd	69.1	69.2	0.2	21,210	21,960	750
Glenoaks Boulevard between Glendale Ave and Verdugo Rd	61.0	63.2	2.2	5,120	8,580	3,460
Adams Street between Glenoaks Blvd and Monterey Rd	49.7	50.0	0.3	580	618	38
Verdugo Circle north of Glenoaks Blvd	45.0	47.5	2.5	310	550	240

SOUNDPLAN MODELING INPUT AND OUTPUT DATA

Sound Sources used in noise model: from SoundPLAN 7.4 noise emission library

- Soccer Game: Reference = 62 dBA L_w/m²
 - Main Field = 4,482 m²
 - \circ Practice Field = 1,802 m²
- Spectator (Standing room) = 86 dBA L_w/m²
 - \circ Main Field = 124 m²
 - o Practice Field = 55 m^2

Wilson Middle School Multi-Purpose Field Assessed receiver levels Calculation

Receiver	Usage	FI	Dir	Leq,d	Ldn,diff	Leq,d,dif	Leq,n,diff	:
				dB(A)	dB(A)	dB(A)	dB(A)	
MF1	RM	G	SW	51.7				
MF2	RM	G	SW	37.4				
MF3	RM	G F2	SW	45.3 52.3				
MF4	RM	G F2	SW	40.8 46.5				
MF5	RM	G F2	SW	42.4 47.1				
MF6	RM	G F2	SW	47.1 52.9				
MF7	RM	G F2	S	45.2 53.4				
MF8	RM	G F2	SW	46.6 52.5				
MF9	RM	G F2	S	46.9 52.6				
SF1	RS	G F2	S	53.8 54.2				
SF1b	RS	G	S	53.0				
SF2	RS	G F2	S	41.5 49.0				
SF2b	RS	G	S	39.4				
SF3	RS	G F2	W	31.4 45.4				
SF3b	RS	G F2	W	46.3 47.6				
SF4	RS	G F2	W	47.9 48.0				
SF5	RS	G F2	W	48.2 48.2				
SF6	RS	G F2	W	49.2 49.2				
SF7	RS	G F2	W	49.7 49.7				
SF8	RS	G F2	W	33.8 46.9				
SF8b	RS	G F2	W	49.9 50.9				

PlaceWorks 3 MacArthur Place, Ste 1100 Santa Ana, CA 92707 USA

SoundPLAN 7.4

1

Wilson Middle School Multi-Purpose Field Assessed receiver levels Calculation

Receiver	Usage	FI	Dir	Leq,d	Ldn,diff	Leq,d,dif	Leq,n,diff	
				dB(A)	dB(A)	dB(A)	dB(A)	
SF9	RS	G	W	33.4				
		F2		46.7				
SF9b	RS	G	W	49.3				
		F2		50.5				
SF10	RS	G	W	32.6				
		F2		45.9				
SF10b	RS	G	W	48.5				
		F2		49.5				

PlaceWorks 3 MacArthur Place, Ste 1100 Santa Ana, CA 92707 USA

2